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ADDRESSING 

THE TRAVELING SALESMAN PROBLEM 

THROUGH EVOLUTIONARY ADAPTATION 

By David Fogel 

INTRODUCTION 

The optimization of the traveling salesman problem continues to 

receive attention for three reasons: (1) Its solution ts computationally 

| difficult although the algorithm itself Is easily expressed; (2) It is 

broadly applicable to a variety of engineering problems; and (3) it has 

become somewhat of a comparison 'benchmark" problem. The task is to 

arrange a tour of n cities such that each city is visited only once and the 

length of the tour (or some other cost function) is minimized. For an exact 

solution the only known algorithms require the number of steps to grow at 

least exponentially with the number of elements in the problem. Brute 

force methods of finding of the shortest path by which a traveling 

salesman can complete a tour of n cities requires compiling a list of 

(n-i )l/2 alternative tours, a number that grows faster than any finite 

power of n. The task quickly becomes unmanageable. 

i i 
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Two recenl papers (Goldberg, Lingle, Jr., 1985; Grefenstette et al., 

1985) addressed the traveling salesman problem through use of the 

genetic algorithm as proposed by Holland (1975). This algorithm Is an 

offshoot of the evolutionary programming concept offered by Fogel (1962, 

> 1964, Fogel et.->!., 1966). 

In Fogers evolutionary procedures the process of Iterative mutation 

and selection Is simulated to evolve a logic most suitable for resolving 

the problem at hand. Intelligent behavior Is viewed as requiring prediction 

of an environment coupled with the use of such predictions for the sake of 

controlling that environment (to the greatest extent possible). The 

behavior of each artificial organism is constructed as a finite state 

machine, a general mathematical function that does not constrain the 

represented transduction to be linear, passive, or without hysteresis. 

The evolutionary process is simulated in the following mannen an 

original "machine" (an arbitrary logic or a "hint") is measured in its ability 

to predict each next event in its "experience" with respect to whatever 

payoff function has been prescribed. Progeny are now created through 

random mutation of this "parent" machine. They are scored in a similar 

manner to the parent in predictive ability. If the parent is better than its 

offspring, the parent Is used to generate other offspring. If, however, an 

offspring is better than its parent, that offspring becomes the new parent. 

teu&v^^ 
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This assures non-regressive evolution. An actual prediction is made when 

the t,redictive fit score demonstrates that a sufficient level of credibility 

has been achieved. The surviving machine generates a prediction, indicates 

the logic of this prediction and becomes the progenitor for the next 

* sequence of progeny, this in preparation for the next prediction. Thus, 

randomness is selectively incorporated into the surviving logic. The 
DC 
<: sequence of predictor machines demonstrates phyletic learning, an 

<s 

£ 

inductive generation of sequences of hypotheses concerning the relevant 

regularities found within the experienced environment, in the context of 

the given payoff function. 

Holland's approach differs from that of Fogel's. Rather than describe 

each organism only in terms of its behavior, Holland emphasizes the coding 

structures which generate such organisms. Holland's genetic algorithms 

search a parameter space where "any point in the parameter space can be 

represented as an n bit vector." "There are two primary operations applied 

to the population by a genetic algorithm. Reproduction changes the 

contents of the population by adding copies of genotypes with above- 

average figures of merit." "Crossover is the primary means of generating 

plausible new genotypes for addition to the population" (Ackley, 1985). 

Holland defines crossover as taking two coding structures, 

Aral la12aln anö A2 = ^l^-^n« and at a ranclom Polnt "x" between 

I and n, exchanging the set of attributes to the right of this position 

yielding offspring of the form: A* = a. |a 12 .a 1 xa2(x*)) a2n "Th's 

'offspring" is added to the population, displacing some other genotype 

I 3 . 
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according to various criteria where It has the opportunity to flourish or 

perish depending on its fitness. Mutation provides a chance for any allele 

to be changed to another randomly chosen value. If the mutation rate is too 

low, possibly critical alleles missing from the initial population will have 

only a small chance of getting...lnto the population. However, if the 

probability of a mutation is not low enough, informatlon...will be steadily 

lost to random noise" (Ackley, 1985). 

Holland likens the actual code being mutated to that of the genetic 

c code that defines a natural organism. While Fogel et al. (1966) only used 

small degrees of "background" mutation, Holland Incorporates the 

operations of gene "crossover" and "Inversion" among other actual biologic 

■ genetic recombinations. Although Holland's work has gone largely 

unnoticed for some time, today renewed attention is being given to genetic 

Jj algorithms. 

Goldberg and Lingle (1985) offered several )bservations of the 

genetic algorithm (GA) as it relates to the traveling salesman problem: 

' I) Simple genetic algorithms work well in problems which can be 

coded so the underlying building blocks (highly fit, short defining 

length schemata) lead to improved performance. 

ft "2) There are problems (more properly codings for problems) that are 

GA-hard — difficult for the normal reproduction ♦ crossover ♦ 

mutation processes of the simple genetic algorithm. 

*3) Inversion is the conventional answer when genetic algorithmists 

^wv:;^^-^^^ 
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E are asked how they intend to find good string ordering, but inversion 

has never done much in empirical studies to date. 

£5 

^ 

3 

Si 

"4) Despite numerous rumored attempts, the traveling salesman 

problem has not succumbed to genetic algorithm-like solution." 

They suggested a new type of crossover operator, the "partially-mapped 

crossover (PMX)," which they believe will lead to a more efficient solution 

of the traveling salesman problem. 

PMX would proceed as follows: consider two possible codings of a tour 

of eight cities. A! and A2. a return to the initial city being implicit: 

A|:3 5 I 2 7 6 8 4 

A2: I  8 5 4 3 6 2 7 

Two positions are determined randomly along the Aj coding. The actual 

cities located between these positions along Aj are exchanged with the 

cities located between the same positions along A2. For example, if the 

positions three and five are chosen, the sub-coding along A| is 1-2-7, and 

the sub-coding along A2 is 5-4-3. Each of these cities is then exchanged, 

leading to the new tours. A*| and A^: 

A*,: 7  15 4 3 6 8 2 

A*o: 5 8  1  2 7 6 4 3. 



Goldberg and Llngle (1985) reported two experiments on ten cities 

where the PMX operator enabled the search to efficiently discover either 

the absolute or near optimum solution. 

Grefenstette et al. (1965) addressed the traveling salesman problem 

using Holland's "simple crossover.' This required the formation of a 

special coding structure Clearly, using this operator on two valid tours 

could result in an "offspring" that was not a valid tour. As Dewdney (1985) 

has commented, the authors' method for devising the appropriate coding 

was ingenious. 

"The representation for a five-city tour such as a, c, et d, t> turns out 

to be 12321. To obtain such a numerical string reference is made to 

some standard order for the cities, say. a, d, c, d, e. Given a tour such 

as a, c, e, d, t>, systematically remove cities from the standard list 

in the order of the given toun remove 4 then ct e and so on. As each 

city is removed from the special list, note its position Just before 

removal, jis first, rls second, ^is third, d is second and, finally ö 

is first. Hence the chromosome 12321 emerges. Interestingly, when 

two such chromosomes are crossed over, the result is always a tour." 

Unfortunately the experiments with this representation were "not very 

encouraging" (Dewdney, 1985). Grefenstette et al. conducted larger 

experiments than those of Goldberg and Llngle, including 50, 100 and 200 

^; cities. In the three reported experiments, after a large number of trials 

/• 

P 

% 

(approximately 14000,20000 and 25000, respectively), the best tours 

were still far away from the expected optimal solutions. 
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At this point It Is natural to ask "why?". After all, the traveling 

salesman problem only requires discovery of a logical pattern. This seems 

completely analogous to what occurs In nature. If the crossover of genes 

works In natural evolution, why shouldn't It worK here? 

The answer Is, In fact, that suggested by Goldberg and tingle's second 

observation: the traveling salesman problem is difficult to address using 

j' Holland's crossover mutation. This is because the crossover operation, as 

defined by Holland, does not mimic the biological crossover of genes. 

r Natural crossover is a phenomenon where 'old linkages between genes on 

homologous chromosomes are broken and new linkages are established. 

Genes that reside on the same chromosome and move together are said to 

be 'linked.' A linkage group is any group of genes physically linked on one 

chromosome...Changes in linkage groups are not truly mutations, however, 

since neither the amount nor the function of genetic material is altered" 

(Levy, 1982). 

Holland's crossover treats the entire tour as a chromosome and each 

city in a tour somewhat as a gene. While this does not change the amount 

of coding, it greatly alters the function of the coding. Natural crossover 

allows for different combinations of alleles. Alleles. by definition, control 

the same characteristic and occupy the same place on similar 

chromosomes. A more appropriate biologic Interpretation of a tour would 

be '.hat it is Itself a gene. Crossover inside a gene Is a nonsequetor. The 

tour is not analogous to a chromosome and each city in a tour is not 

analogous to a gene. These relations are In fact anomolous. 

I 
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B The result of Holland's crossover Is therefore a near random search 

" throughout the entire space of possible tours. This Is, of course, the 

^ essence of the difficulty. Dewdney (1985) has commented that by using 

Holland's crossover 'there Is so much Juggling of genes and cracking of 

^ chromosomes that...(a parent)...is hard put to recognize Its own 

grandchildren." As the number of cities grows larger, Hollands crossover 

effectively destroys the link between each parent and its offspring. The 

•^ results can even be worse than a complete enumeration of all possible 

tours (Appendix). Adaptive plans must retain previous advances and 

£ incorporate them Into future solutions. 

£ 

I 
ANALTFRNATIVFAPPRQAPH 

An alternative solution is the adaptive aigorithmr so named because it 

does not Include any of the genetic-mimicking operators that Holland has 

suggested, but instead emphasizes the behavioral appropriateness 

y (fitness) of the evolved trial solutions. The algorithm, which Is equivalent 

vv to Fogel's evolutionary programming restricted to single state machines, 

only slightly mutates the existing tour by removing just floft city from a 

v given list and replacing it in a different randomly chosen position. This 

mutation is only mildly more complicated than the simplest possible 

mutation, that is, swapping adjacent cities. It Is clearly less complex than 

- either the PMX operator or Holland's crossover; through multiple mutation, 

this single alteration can be made equivalent to either of these crossover 

operators. Holland (1975) has stated: 'If successive populations are 

produced by mutation alone (without (genetic) reproduction), the result Is 

8 
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a random sequence of structures drawn from (all possible structures)." 

This Is only par.tially correct. The adaptive algorithm does result in a 

r?ddom search, but only in that portion of the space relatively close to the 

parent which generates the offspring. This dramatically increases the 

effectiveness of the search through the state space of all possible 

constructions. 

•'; Not only must advances be retained but "dead-ends" must be 

circumvented. Because there is a finite number of offspring that can be 

f generated through mutation evolutionary stagnation might well occur on a 

■M local optimum. To prevent this it is useful to randomh' alter the adaptive 

's topography (payoff function) that is being searched. This can be accomp- 

li lished by a variety of means. One of these is to occasionally allow for the 

survival of offspring that are slightly worse than their parents. In effect, 

<J the scoring function is made "noisy." 

What results is analogous to the searching of a maze; when a dead-end 

is react.ed some backtracking is allowed and the overall search is 

reinitiated. Unfortunately, the topography is much like an upside-down bed 

K of nails, with some nails being longer (better) than others. From any given 

nail, it is possible to travel to n(n-1) other ^ails in a single mutation by 

t randomly choosing a city and placing it in ? afferent position. Unlike a 

maze, when the evolving phyletic line reaches a non-optimal nail from 

which no single mutation results in a better tour, it is impossible to 

determine the "direction" in which to backtrack. The complete prevention 

of evolutionary stagnation is impossible unless all inheritance is given up 

and the search made completely random. 

^s^&&&k&^^ :NV^-" V- 
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Experiments were performed to determine the effectiveness of the 

adaptive algorithm. Initially, 126 independent trials were performed on a 

24 city traveling salesman problem where the cities were positioned on 

the periphery of a rectangle. Clearly, the minimum length tour is equal to 

the perimeter of the rectangle. In this case, 250. The amount of noise that 

was used is indicated in Table I. The same degree of noise was used 

throughout all of the experiments described. Of the 128 trials performed. 

Table I: 

Number of Fvaluatgd Offspring Offspring ^cor<>/Parent Srnre Accept» 
Less than 1,500 

Between 1,500 and 5,000 

Between 5,000 and 10,000 

Between 10,000 and 20,000 

<- 1.05 15« 
<- I.I 10X 
<- 1.2 5% 

> 1.2 1* 

<« 1.05 5% 
<-l.1 2.5% 
<-1.2 1% 
>l.2 0.5%                : 

1 

<- 1.05 2% 
<-1.1 1% 
<-l.2 0.5% 

> 1.2 0.2% 

<- 1.05 0.5% 
> 1.05 0% 

Greater than 20.000 Any ratio 0% 

Table 1: The amount of noise. 

10 
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N 90.625% found the optimum solution In an average of 5297.48 Iterations 

tt (Figure 1) where the maximum number of Iterations was arbitrarily set at 

14,000. Figure 2 Indicates the results of the remaining 9375% of the 

trials In which the evolving tours were, at least temporarily, trapped on a 

local optimum. Despite the seemingly non-complex arrangement of cities, 

* the numerous local optima Inherent to this city-structure make this 

particular traveling salesman problem somewhat recalcitrant. 

f* To further Investigate the efficiency of the algorithm, 20 experl- 

* 

a 

S 

a 

ments were conducted requiring a tour of 50 cities where the cities were 

redistributed for each experiment. In each, no optimum tours were 

discovered in 20,000 Iterations, but It was clear that the evolutionary 

process was "solving the problem." Figure 3 Indicates the results of a 

typical experiment. Figure 4 Indicates the mean and estimated two-slgma 

limits of the evolutionary process as it discovered more and more suitable 

tours as offspring were evaluated. Note that "backtracking" played an 

Integral part of the search. 

5^ Experiments were then performed requiring a tour of 100 cities under 

similar conditions. Again, while none of the eight experiments found a 
n 
P perfect tour in 20,000 Iterations, the evolutionary process performed 

A, well. Figure 5 Indicates the results of a typical experiment while 

Figure 6 indicates the mean and two-slgma limit of the reduction in tour 

length as offspring were evaluated. 
»- 

v. Further experiments required a tour of 90 cities. Here, 18 trials 

ri I1 
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were performed on ten groups of nine cities that were randomly placed on 

' the coordinate grid. The process was allowed to evolve 32,000 offspring. 

r.-. While the optimum solution remained undiscovered, it is of interest to 

note that the problem was evidently addressed at two distinct levels. The 

^ evolutionary process initially solved the problem at a gross level, 

discovering the minimum tour between the groups of cities (Figure 7 and 

Efi Figure 8). Insufficient time was allowed to sort out the problem at a finer 

I 

level of detail. Figure 9 indicates the mean and estimated two-sigma 

limits to the reduction of tour length up to the 20.000th iteration. 

An extremely large traveling salesman problem was also analyzed. 

Here, 256 cities were randomly distributed. Based on the previous results 

it was not expected that the adaptive algorithm would discover the 

optimum solution in 20,000 iterations; however, after only 10,000 

S; iterations it had reduced the initial tour length by roughly 50 percent. 

Figure 10 Indicates the "surviving" tour after evaluating 10,000 offspring 

* while Figure 11 Indicates the success of the evolutionary process in 

discovering better and better tours. The available computation time 
0 limited the analysis, however the results were certainly encouraging. 

i 
The evolutionary program was also extended to allow for cities 

[3 distributed in three dimensions. Here, 50 cities were randomly distributed. 

^ As expected, the addition of the third dimension had little effect on the 

^ adaptive algorithm. The initial tour length was reduced by 50 percent in 

{K fewer than 6,000 iterations, see Figure 12. Figure 13 Indicates two views 

of the surviving tour after evaluating 20,000 offspring. 
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These experiments Indicated the approximately exponential learning 

ability of the adaptive algorithm. However, the quality of the resulting 

tours remained to be determined. This can be assessed only when the 

distribution of the (n-1 )!/2 tour lengths can be approximated. Two 

experiments were performed In this regard. 

ö First, 28 cities were positioned In a square of perimeter 720 units. 

w This, of course, corresponds to the optimum tour length. A computer 

program was written to sample 2500 tours at random and found an 

p estimated average tour length of (I - 636.8163 (an average error of 

118.8163) with an estimated standard deviation of cr- 59.72235. Because 

ä of its flexibility, a gamma function was fitted to describe the error 

distribution: 

(1)    f(x) - (2 x 10"7)(x3)(e' x/30),       x i 0. 

*{£ Thirty trials were conducted with the adaptive algorithm which yielded an 

average tour length of 798.613 after evaluating 20,000 offspring. The 

average tour error was approximately 79 units. Integrating (I) from zero 

to 79 yields the estimated percentage of tours that were of higher quality 

than this average tour error. Here, this integral, calculated using 

J5 Simpson's rule, was approximately 0.257. Thus, the average tour error of 

the adaptive algorithm was superior to roughly 75 percent of the possible 

£ tours, this after evaluating only 3.7 x 10'24 of the state space. It should 

- be noted that 23 out of the 30 trials found perfect tours, but because the 

^ square was large, locally optimal tours had great length as compared to 

^ the optimum tour length. This dramatically increased the average length of 

the 30 trials. 

13 
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A more complicated experiment was also performed. Here, 36 cities 

were organized in four groups of nine with a minimum length tour of 460 
« 

units. Again, 2500 tours were sampled at random and yielded an estimated 

average tour length of 5 • 617.1259 (an average error of 157.1259) with a 

^ estimated standard deviation of o - 29.43465. A gamma function was again 

fitted to the error distribution; 

(2) f(x) - ((5.528 5)(r(28.5))r' (x275)(e"x/5 5).       x i 0. 

Thirty trials were conducted with the adaptive algorithm which yielded an 

average of 5? - 518.7947 for an average error of approximately 59 units. 

Integrating (2) from zero to 59 yields the estimated percentage of tours 

that were superior to the average results of the adaptive algorithm. This 

was computed to be 0.0000006438, that is to say, the adaptive algorithm 

produced tours that were generally superior to over 99.9999 percent of all 

possible tours, this after examining only 3.87 x 10'36 of the entire tour 

state space. 

I 

■ 
^ An additional set of experiments was conducted to directly compare 

the adaptive algorithm to the PMX operation. Here, 100 cities were 

distributed at random and 30 trials were performed using both methods. 

The cities were redistributed for each trial to minimize the effect of an 

unusual set of cities. Each algorithm was allowed to generate 20,000 

offspring. The results were: 

Adaptive Algorithm ££ 

x - 1454.403 units X • 4319.455 units 

s-   110.951 units s-   165.807 units 

where X is the average of the thirty trials and s is the standard deviation 

,;>; of the sample. 

i 
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As mentioned previously, the PMX operation does not retain sufficient 

information between parent and offspring to perform effectively. 

Essentially, the PMX operation Is equivalent to swapping a random number 

of cities In a single tour. The number of cities to be swapped Is equal to 

the length of the section of the tour chosen at random. The expected 

number and variability of swaps per mutation are Indicated In Figures 14 

& and 15. In relatively small problems, on the order of ten cities, the PMX 

»v operation averages about three swaps with minimal variance. However, In 

larger problems, such as the 100 city problem performed here, the PMX 

£ averages more than 33 swaps per mutation with a rather high variance. 

This prevents the required link between generations. 
.■► 

i 

I 
8 

I 

» 

arousiotfi 

Suv essful adaptation does not require sophisticated mutations. In an 

evolutk ary scheme only the "behavior" of a coding structure is scored; 

the code I*self is never scored. The bottom-up view that emphasizes 

mutation operations as the key to adaptive plans Is Incorrect. Competition 

occurs not between coding structures but between expressed behaviors. 

The particular structure of the code Is generally unimportant. 

Further, sophisticated mutation operations can be detrimental. For 

-. adaptation to succeed, a sufficient link between parent and offspring must 

" be maintained. When this link is destroyed the results can be worse than a 

U random search of all possible coding structures. Since the traveling 

15 
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i the code. 

i 
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St 

salesman's tour is not analogous to an organism's chromosome, operations 

of the form of Holland's crossover are unsjitaole. In general, little 

emphasis should be placed on specific mutation operations. Modeling a 

given mutation operation in order to elicit appropriate behavior is much 

like requiring an airplane to possess feathers in order to fly. It is the 

mutation and selection of behavior that is imporatant. not the structure of 

Search by adaptive methods must avoid stagnation in local optima. 

^ Stagnation can be prevented through the use of a noisy payoff function. 

This concept Is similar to that suggested by Klrkpatrlck et al. (1983) for 

K optimizing simulated annealing, but it is not necessary to resort to such 

specific analogies. In a dynamic environment, the rewards and penalties 

for different behaviors vary. The search for better and better solutions Is 

everlasting. Evolution is a continuing process with no truly optimum 

solution. Incorporating noise into the adaptive algorithm prevents 

stagnation of the evolving phyletic line. 

Clearly, evolutionary adaptation can effectively address the traveling 

salesman problem. The experiments described here Indicate the efficiency 

of this evolutionary search. But, In any given problem, there Is no 

guarantee that the optimum solution will ever be found. Evolution 

discovers only what it Is capable of discovering. New solutions that are 

superior to old ones tend to survive. Despite this, the adaptive algorithm, a 

reif ication of natural evolution, tends to discover exceedingly appropriate 

behavior in the context of a given criteria. 
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A completely random search (with replacement) will take roughly 

twice as long to find the optimum solution as an enumeratlve search 

(without replacement). To show this, consider the following two theorems: 

Theorem 1: If there are ß possible solutions and only one 

optimum solution, the expected number or trials that must be 

made before the optimum solution Is found, using an enumeratlve 

search, assuming one trial Is made at a time, is equal to 

(D*l)/2. 

:-: 

Proof: In an enumeratlve search, sampling is made without replacement. 

The probability, therefore, of discovering the optimum solution on any 

given trial is equal to the product of the probabilities of not discovering 

the optimum solution on any prior trial multiplied by the reciprlcal of the 

number of untried solutions. The expected number of trials that would have 

to be examined before finding the optimum solution would therefore be: 

Ixf(x)- Iß"1 ♦ ^Kß-D/ßHß-ir1 ♦ JKß-D/ßlKß^Aß-DHß^)-' 

♦ - ♦ (ß-l)((ß-1)/ß][2/3Hl/2l ♦ ßl(ß-l)/ßH2/3Hl/2] I 

« Iß"1 ♦ 2^"' ♦ Sß"1 ♦ • ♦ (ß-lHT1 ♦ ßß'1 

-ß-'d ^♦J* •♦(ß-1)*ß) 

■ß"Hß(ßH)/2l 

" (ß* 1 )/2. Q.E.D. 
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Theorem 2: If there are B possible solutions and only one 

optimum solution« the expected number of trials that must be 
« 

made before the optimum solution Is found. In a completely 

random search, assuming one trial Is made at a time. Is equal to 

D. 

Proof: In a completely random search, sampling Is made with 

^ replacement. The probability, therefore, of discovering the optimum 

solution on any given trial is equal to the product of the probabilities of 

i- not discovering the optimum solution on any previous trial multiplied by 

the reciprical of the total number of possible solutions. The expected 

*:• number of trials that would have to be examined before finding the optimal 

solution would therefore be: 

2xf(x)• 1 ß"1 ♦ 21(ß-1 )/Dlß"' ♦ 3l(ß-1 VßJ2ß"1 ♦ - 

• ß"' (1 ♦ 2l(ß-l)/ßl ♦ SKß-D/fll2 ♦   ) 

-ß-'lIAHß-D/ß))]2 

>. -ß. Q.E.D. 
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